Hydrophobic tendency of polar group hydration as a major force in type I antifreeze protein recognition.

نویسندگان

  • Cheng Yang
  • Kim A Sharp
چکیده

The random network model of water quantitatively describes the different hydration heat capacities of polar and apolar solutes in terms of distortions of the water-water hydrogen bonding angle in the first hydration shell (Gallagher and Sharp, JACS 2003;125:9853). The distribution of this angle in pure water is bimodal, with a low-angle population and high-angle population. Polar solutes increase the high-angle population while apolar solutes increase the low-angle population. The ratio of the two populations quantifies the hydrophobicity of the solute and provides a sensitive measure of water structural distortions. This method of analysis is applied to study hydration of type I thermal hysteresis protein (THP) from winter flounder and three quadruple mutants of four threonine residues at positions 2, 13, 24, and 35. Wild-type and two mutants (VVVV and AAAA) have antifreeze (thermal hysteresis) activity, while the other mutant (SSSS) has no activity. The analysis reveals significant differences in the hydration structure of the ice-binding site. For the SSSS mutant, polar groups have a typical polar-like hydration, that is, more high-angle H-bonds than bulk water. For the wild-type and active mutants, polar groups have unusual, very apolar-like hydration, that is, more low-angle H-bonds than bulk water. This pattern of hydration was seen previously in the structurally distinct type III THPs (Yang & Sharp Biophys Chem 2004;109:137), suggesting for the first time a general mechanism for different THP classes. The specific shape, residue size, and clustering of both polar and apoler groups are essential for an active ice binding surface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A MODEL FOR THE BASIC HELIX- LOOPHELIX MOTIF AND ITS SEQUENCE SPECIFIC RECOGNITION OF DNA

A three dimensional model of the basic Helix-Loop-Helix motif and its sequence specific recognition of DNA is described. The basic-helix I is modeled as a continuous ?-helix because no ?-helix breaking residue is found between the basic region and the first helix. When the basic region of the two peptide monomers are aligned in the successive major groove of the cognate DNA, the hydrophobi...

متن کامل

NMR Characterizations of the Ice Binding Surface of an Antifreeze Protein

Antifreeze protein (AFP) has a unique function of reducing solution freezing temperature to protect organisms from ice damage. However, its functional mechanism is not well understood. An intriguing question concerning AFP function is how the high selectivity for ice ligand is achieved in the presence of free water of much higher concentration which likely imposes a large kinetic barrier for pr...

متن کامل

Refined solution structure of type III antifreeze protein: hydrophobic groups may be involved in the energetics of the protein-ice interaction.

BACKGROUND Antifreeze proteins are found in certain fish inhabiting polar sea water. These proteins depress the freezing points of blood and body fluids below that of the surrounding sea water by binding to and inhibiting the growth of seed ice crystals. The proteins are believed to bind irreversibly to growing ice crystals in such a way as to change the curvature of the ice-water interface, le...

متن کامل

A mechanism for stabilization of membranes at low temperatures by an antifreeze protein.

Polar fish, cold hardy plants, and overwintering insects produce antifreeze proteins (AFPs), which lower the freezing point of solutions noncolligatively and inhibit ice crystal growth. Fish AFPs have been shown to stabilize membranes and cells in vitro during hypothermic storage, probably by interacting with the plasma membrane, but the mechanism of this stabilization has not been clear. We sh...

متن کامل

Hydrophobic regions on protein surfaces: definition based on hydration shell structure and a quick method for their computation.

The hydrophobic part of the solvent-accessible surface of a typical monomeric globular protein consists of a single, large interconnected region formed from faces of apolar atoms and constituting approximately 60% of the solvent-accessible surface area. Therefore, the direct delineation of the hydrophobic surface patches on an atom-wise basis is impossible. Experimental data indicate that, in a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proteins

دوره 59 2  شماره 

صفحات  -

تاریخ انتشار 2005